EPA News: EPA Report Shows Air Emissions of Toxic Chemicals from Industrial Facilities Down More Than Half Since 2005

2017-01-13 Toxic Air Emissions Down 56 Percent

WASHINGTON — The U.S. Environmental Protection Agency today released its annual Toxics Release Inventory (TRI) National Analysis, which shows releases of toxic chemicals into the air fell 56% from 2005-2015 at industrial facilities submitting data to the TRI program.

“Today’s report shows action by EPA, state and tribal regulators and the regulated community has helped dramatically lower toxic air emissions over the past 10 years,” said Jim Jones, EPA Assistant Administrator for the Office of Chemical Safety and Pollution Prevention. “The TRI report provides citizens access to information about what toxic chemicals are being released in their neighborhoods and what companies are doing to prevent pollution.”

The report shows an 8% decrease from 2014 to 2015 at facilities reporting to the program contributed to this ten-year decline. Hydrochloric acid, sulfuric acid, toluene and mercury were among chemicals with significantly lower air releases at TRI-covered facilities. Medical professionals have associated these toxic air pollutants with health effects that include damage to developing nervous systems and respiratory irritation.

[Read more…]

The Benefits of Automated Particulate Analysis by SEM-EDS

Automated Particle Analysis by SEM/EDS

When encountering puzzling particulate results, questions arise such as:

What species of particulate are in this sample?

What is the chemical composition of these particles?

What is the particle size distribution of this sample?

Automated particle analysis by Scanning Electron Microscopy and Energy Dispersive X-ray Spectrometry (SEM-EDS) provides a method to answer questions about particle populations that arise in a very wide range of industries. Some examples of SEM-EDS application include: wear particle analysis, size distribution of pharmaceutical ingredients, source determination of airborne particulate, and nanoparticle characterization.  SEM-EDS can also determine whether non-process related particulate is biasing the catch through identification of particle species and chemical composition.

SEM-EDS is a powerful analytical tool for obtaining concise information about a particulate sample.

Figure 1: Representative Automated Particle Analysis High Contrast

Figure 1: Representative Automated Particle Analysis High Contrast

The first step in SEM/EDS automated particle analysis is to acquire a background image with sufficient contrast between the background and the particles so that image analysis can differentiate between them (Figure 1).  For automated image analysis systems, a “particle” is defined as a set of contiguous pixels all of which are brighter (or more rarely, darker) than the threshold brightness used to define the surrounding “background” pixels.

Next, particles are recognized by the image analysis system (which is a part of the SEM/EDS software).  Figure 2 shows the same field of view as Figure 1, except that there is indication of the particle count that the system has identified.  The analysis system saves the location of each particle and then two-dimensional size and shape parameters for each particle are determined. Typical parameters include maximum, minimum and average diameters, perimeter, and aspect ratio.

Figure 2: Representative Automated Particle Analysis

Figure 2: Representative Automated Particle Analysis

Once the particles in the field of view are recognized, the automation system of the microscope conducts a chemical analysis of each particle to acquire the signature on an EDS spectrum.  A typical example appears as Figure 3.  A peak in the EDS spectrum indicates the presence of the corresponding element in the particle which can then be classified based on its composition.  In Figure 3, the spectrum shows the particle to be composed of Iron (Fe) and Oxygen (O), indicating an Iron Oxide particle.

Once every particle in the field of view is recognized and its dimensions and composition saved, the microscope moves to a new field of view and the process is repeated until a set number of particles or a predetermined number of fields of view have been analyzed.  Using this systematic analysis sampling allows for the characterization (size, shape, composition) of hundreds and even thousands of particles in just a few hours without operator involvement beyond the initial setup.

Figure 3: Representative EDS Spectrum of Automated Particle Analysis

Figure 3: Representative EDS Spectrum of Automated Particle Analysis

Finally, the results are tabulated, giving a complete picture of the particle types, sizes, and shapes.  The tabulation is entirely customizable since all of the data (size, shape, composition) is stored for each individual particle.

Table A: Percent Distribution of Particles by Mass with Corresponding Emission Rate

Amount of Particulate Emitted in One (1) Hour = 10 lbs

Particle Size


Particle Emission Rate

0.5 – 1.0



1.0 – 2.5 37.25 3.725
2.5 – 5.0 7.57 0.757
5.0 – 7.5 1.44 0.144
7.5 – 10 .40 0.04
10 – 25 0.28 0.028
25 – 50 0.00 0
50– 100 0.01 0.001
>100 0.00 0
TOTALS 100 10

ESS provides emissions testing, air quality analysis, and consulting services for manufacturers, municipal water treatment plants, public utilities, paper mills, and other industrial facilities in the US and overseas.  Since its inception in 1979, ESS has conducted thousands of emissions tests and provided countless hours of environmental consulting services.  ESS specializes in conducting the EPA testing methods for all applicable EPA subparts, such as: NSPS (40 CFR 60), NESHAP (40 CFR 63), RATA (40 CFR 75), and various other federal and state regulations.

We are committed to the highest standards of integrity, excellence and customer service.  ESS continues to invest in facilities, equipment, education, and safety to provide a broad range of services to meet our clients’ varying needs.

Adapted from information available at: http://mvascientificconsultants.com/


Scientists Find Way to Convert CO2 Into Ethanol

CO2 to Ethanol

Scientists at the Oak Ridge National Laboratory in Tennessee have discovered a chemical reaction to turn CO2 into ethanol, potentially creating a new technology to help avert climate change. Their findings were published in the journal ChemistrySelect.

Researcher had hoped to convert carbon dioxide that had been dissolved in water to methanol, a chemical released naturally by volcanic gases and microbes, which can cause blindness in humans if ingested.

But instead of methanol, they discovered they had ethanol, a primary component of gin and also a potential fuel source. Surprised, the team realized that not only was their new material converting the carbon dioxide to ethanol, it needed very little outside support.

The material is a small chip–about a square centimeter in size–covered in spikes, each just a few atoms across. Each spike is constructed out of nitrogen with a carbon sheath and a small sphere of copper embedded in each tip. The chip is dipped into water and carbon dioxide is bubbled in. The copper acts as a small lightning rod, attracting electricity and driving the first steps of the conversion of the carbon dioxide and water into ethanol, before the molecules move to the carbon sheath to finish the process.

Read more about this exciting development in the full article from Popular Science.